Algoritma C4.5 sebagai Penerapan Decision Tree-Based Classification Model untuk Mengklasifikasikan Tingkat Omzet UMKM Berdasarkan Profil Bisnis

Authors

  • Yudhi Fajar Saputra Universitas Widya Gama Mahakam Samarinda
  • Sugiarto Universitas Widya Gama Mahakam Samarinda

DOI:

https://doi.org/10.24903/je.v13i2.3562

Keywords:

UMKM, Decision Tree C4.5, klasifikasi omzet, profil usaha, data mining

Abstract

Micro, Small, and Medium Enterprises (MSMEs) significantly contribute to the national economy. However, many of them experience stagnant revenue due to limited business profiles and the lack of data-driven development strategies. This study aims to build a classification model for MSME revenue levels based on business profile attributes using the Decision Tree C4.5 algorithm. The dataset consists of over 13,000 publicly available records, which were preprocessed and categorized into three revenue classes: low, medium, and high, based on quartile distribution. The results show that the C4.5 model achieves a classification accuracy of 48.53%, with a dominant prediction in the medium revenue category. The resulting decision tree structure generates interpretable and logical rules, such as: “If the business type is services, not legally registered, and has assets less than IDR 7 million, then the revenue tends to be medium.” Further analysis reveals that attributes such as business type, legal status, assets, and production capacity are key predictors of MSME revenue classification. Although the model's accuracy is still limited, this approach provides a solid foundation for developing decision support systems for MSME development agencies. The study recommends exploring additional features and implementing ensemble methods to improve model performance in future research

References

Aggarwal, C. C. (2015). Data Mining: The Textbook. Springer.

Fauziah, N., & Hidayat, R. (2019). Implementasi Algoritma Decision Tree C4.5 untuk Analisis Performa Digitalisasi UMKM. Jurnal Teknologi Informasi, 14(2), 67–73.

Fitria, N., & Rahmat, R. (2020). Penerapan Algoritma C4.5 dalam Sistem Rekomendasi Jurusan Mahasiswa Baru. Jurnal Teknologi Dan Sistem Komputer, 8(2), 123–130. https://doi.org/10.14710/jtsiskom.8.2.123-130

Han, J., Kamber, M., & Pei, J. (2011). Data Mining: Concepts and Techniques (3rd ed.). Morgan Kaufmann.

Kementerian Koperasi dan Usaha Kecil dan Menengah Republik Indonesia. (2023). Laporan Tahunan UMKM Indonesia 2023.

Prasetyo, D., Nurhayati, S., & Hartanto, D. (2021). Klasifikasi Kelayakan Kredit UMKM Menggunakan Algoritma Decision Tree. Jurnal Ilmiah Teknologi Informasi Asia, 15(1), 45–54.

Quinlan, J. R. (1993). C4.5: Programs for Machine Learning. Morgan Kaufmann.

Rosmansyah, Y., & Pratiwi, D. E. (2020). Comparative Analysis of Classification Algorithms for Small Business Success Prediction. Procedia Computer Science, 179, 311–319.

Sari, D. K., Wardani, T., & Harahap, M. F. (2022). Klasifikasi Tingkat Pendapatan UMKM Kuliner Menggunakan Decision Tree C4.5. Jurnal Sistem Informasi Dan Bisnis, 10(1), 45–54.

Setiawan, A., & Mulyadi, D. (2021). Klasifikasi Kelayakan Kredit UMKM Menggunakan Algoritma C4.5. Jurnal Informatika, 15(2), 113–120.

Wijaya, A., Fadilah, A., & Rahayu, E. (2021). Prediksi Penyakit Jantung Menggunakan Algoritma C4.5. Jurnal Informatika Dan Komputer, 22(1), 15–22.

Yuliana, M., & Siregar, R. A. (2022). Pengelompokan Nasabah Berdasarkan Kemampuan Finansial Menggunakan C4.5. Jurnal Sistem Informasi, 18(3), 88–97.

Downloads

Published

2024-09-05

How to Cite

Saputra, Y. F., & Sugiarto. (2024). Algoritma C4.5 sebagai Penerapan Decision Tree-Based Classification Model untuk Mengklasifikasikan Tingkat Omzet UMKM Berdasarkan Profil Bisnis. Jurnal Ekonomika: Manajemen, Akuntansi, Dan Perbankan Syari’ah, 13(2), 188–197. https://doi.org/10.24903/je.v13i2.3562

Issue

Section

Articles